Milan University, 28" May 2021

Structured prediction of Human
Phenotype and Gene Ontology terms
with Hierarchical ensembles

Computer Science

Department AnacletoLAB

£95.7% | UNIVERSITA
E_ " & | DEGLI STUDI
Y | DIMILANO

Computational Biology and
Bioinformatics

Marco Notaro
https://marconotaro.github.io



https://marconotaro.github.io/

Prediction of:
* Protein Function (applications in Molecular Biology);
 Human gene-abnormal phenotype associations (applications in Medicine);

|

Complex Classification or Ranking Problem

|

Issues:
 multi-class: hundreds of thousands of functional classes to predict;
* multi-label: an instance (i.e. gene/protein) may be annotated to more than
one class at the same time;
* classes are unbalanced: small number of ‘positives’ annotations and a large
number of ‘negatives’ annotations;
 dependencies among labels: functional classes are hierarchically related;
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CS- Scientific Relevance

Problems of great interest in the scientific community

Critical Assessment of Function Annotation (CAFA) gathering the main
international research groups interested on the Automated Protein
Prediction (AFP)

prediction ; !
Participants !
' Jan. 2014 1 Sep. 2014 __ Mar 2015
" Sep. 2013 /7\ /.' time
Organizers : |
prepar afff)ﬂ annotation growth | assessment X
Launch Close Collect Release
CAFA2 submission benchmarks results
(100,816 targets) (126 models) (3,681 proteins)

CAFA Publications

 CAFA1l: A large-scale evaluation of computational protein function prediction, Radivojac P, Clark
WT, et al. (100 additional authors) Nature Methods, January 2013

» CAFA2: An expanded evaluation of protein function prediction methods shows an improvement
in accuracy, Yuxiang Jiang, Tal Ronnen Oron, et al. (145 additional authors) Genome Biology,
2016

» CAFA3: The CAFA challenge reports improved protein function prediction and new functional
annotations for hundreds of genes through experimental screens, Naihui Zhou, Yuxiang Jiang, et
al. (165 additional authors) Genome Biology, 2019

 CAFA4: challenge in the evaluation phase...
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BIO- Ontology

Problem: Hierarchical prediction of Abnormal
Phenotype associated to human diseases

Problem: Hierarchical Prediction
of Protein Functions

GENEONTOLOGY

Unifying Biology
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CS- Flat Approaches (1)

Hierarchy-unaware (or flat) approaches proposed in literature

- sequence based methods: follow transfer-of-annotation” paradigm where
a gene product is compared against a database and annotated with the
function of another protein on the basis of sequence similarity (BLAST (aischu
etal. 1990), PANNZER (Hoim et al. 2018) )

- network based methods: transfer annotations from labeled to unlabeled
nodes by exploiting “proximity relationships” between connected nodes.
These algorithms relied on the so-called guilt-by-association (GBA) rule,
which makes predictions assuming that interacting proteins are likely to
share similar functions (GBA (oiiver et at. 2000, RANKS (valentini et al. 2018) )

Drawback: fail to exploit the inherent hierarchical structure of the
annotation space
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CS- Flat Approaches (2)

Flat Approaches:
o Pro:
* simplicity
* make predictions separately for each ontology class
o Cons:
e a prioriloss of information

* neglect structural information between classes | Flat Classification:
a Toy Example

Violation Hierarchical Constraint:
positive instance for a class implies
positive instance for all the ancestors of
that class
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CS- Hierarchy-Aware Approach

Hierarchy-aware approaches proposed in literature:

« Kernel-based structured output methods: GOstruct
(Sokolov and Benhur 2010) PHENOstruct (Kahanda et al. 2015);

e Hierarchical Ensemble Methods (Guan et al. 2008, Valentini 2014);

Advantage

* improve classification performance by explicitly taking
into account the hierarchical relationships between

labels
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CS- HEMDAG

HEMDAG a family of Hierarchical Ensemble Methods (HEM) for
Directed Acyclic Graph (DAG)

HEMs Subfamily Bottom-up step | Consistency step Type
HTD HTD None HTD
GPAV GPAV GPAV
;l;gfprTF '{g(l;:gPAlS Children (I;I[;i[zf Parameter-free
descensTF DESCENS Descendants HTD
ISOdescensTF | ISO-DESCENS GPAV
tpr'T
tpr'w TPR-DAG HTD
tprwT .
TSOIT Children
ISOtprw I[SO-TPR GPAV
ISOtprWT
descensT .
p— Parametric
pEp— DESCENS HTD
descensTAU Descendants
ISOdescensT
ISOdescensW
TSOdescensWT ISO-DESCENS GPAV
ISOdescensTAU

HEMDAG (link)
{D ANACONDA CLOUD

(R
Read the Docs O GitHub
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https://github.com/marconotaro/HEMDAG

CS- HEMDAG- Highly Modular Structure

(a) Training of the base classifier: each classifier is trained using a specific learning algorithm on each term of the ontology;

(b) Hierarchical combination of the base classifiers: base classifiers are hierarchically organized according to the topology of the
ontology;

(c) Bottom-up step: only the nodes considered to be “positive” are bottom-up propagated (circles with yellow rim); bottom-up
yellow arrows represent positive predictions up-propagated and combined with those of their parents. This step boosts the
sensitivity of the predictions, but it does not guarantee that they are consistent with the hierarchy.

(d) Consistency step: it provides “TPR-safe” predictions. Circles with purple rim represent nodes whose predictions are
corrected according to the hierarchy.

(a) (c) BOTTOM-UP STEP
B %
(c3) / .+ (cn) [ Classifiers 5 ® & \,{é é@

CONSISTENCY STEP
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CS- HTD: Hierarchical Top-Down for DAGs

HTD-DAG:

rule:

r

Flat scores ¥ are hierarchically corrected to ¥; according to this simple

; if € root(G)
Miljepar() Y5 Miljeparc) Y5 < Ui

Ui otherwise

Remove constraint
violations

Worst scenario: predictions
at leaves nodes are negatives
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CS- TPR-DAG: True Path Rule for DAGs

TPR ensemble for DAGs: double flow of information

Sensitivity | Removing
improving v E violations
T I )
I
S T
( 0 o O I
P

QOOC > OO0 O y
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CS- Bottom-Up Step (1)

In the bottom-up Step the ensemble decision is modified by averaging the local
prediction of a node i with that of its positive children ¢z ;

’L JEPD;

Different strategies can be used to define the positive ¢@ of class i :

A. Adaptive Threshold Strategy: maximize M on training data by internal CV
= {J € child(i)|y; > t;,t; = argm?XM(j, t)}

B. Threshold Free Strategy: positive children are those that achieve a score
higher than that of their parents

¢i = {J € child(i)|y; > Ji}
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CS- Bottom-Up Step (2)

TPR-DAG family of algorithms

C. Weighted TPR: w € [0,1] to balance the contribution between node i and that
of its positive children

@iizwﬁi+ |¢ Zyg

JED:

D. DEScendant Classifier ENSemble (DESCENS): to enhance the contribution of the
of the most specific nodes we can consider the descendants instead of children

= A B+ 2 B A= { edesclilsy > 1)

E. Descendants-7: 7 € [0,1] to balance the contribution between ¢z e 57,

i = 1+’¢Z (i + Y ;) + yﬂrZyg 0i = Ay \ &

JEP; JEb;
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CS-TPR-DAG pseudo-code

[ Input:

:g:f{l";“ i Block A. Maximum Distance of each

-G =< gl >, B € [0,1] node from the root:

begin algorithm . .

01: A, Compute Vi € V the max distance from root(G): * Be”man_Ford algorlthm’

02: E':={ele € E, ¢' = e} * Topological Sort algorithm.

03: G =<V, E >

04: dist :== Bellman.Ford(G', root(G"))

o ijfij‘;ﬁ‘:;}“;;ﬁ:f)i; . Block B. Performs a per-level bottom-

07: Ny = {ildist(i) = d} up visit of the graph and updates the

08: for each i€ N, do . . .

09 Select the set &, of “positive’ children flat predictions according to one of

v B = w0+ Lo, ) the aforementioned strategies.

120 end for This step does not assure the

13:  C. Per-level top-down visit of G . « e

o gy consistency of the predictions.

15: for each d from 1 to max(dist) do

o = Block C. Nodes are processed by level

18: £ = it par (i) from the least to the most specific

19: if (x <3

20, 0 :Z;) terms and the bottom-up scores are

3; else corrected according to HTD-DAG rule.
: Ui = Y

23: end for

24: end for .

end algorithn Overall TPR-DAG Computational

Qutput: Complexity: O(|V

O - plexity: O(|V])
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CS- Maximum Distance

To preserve the consistency of the predictions the levels must be defined
according to the maximum distance from the root:

y is consistent <= Vi € V,j € parents(i) = y; > y;

o 0.9

0.8
M e
0.7 .6 7

inconsistent | Min. distance e 0.8
. 1/[21 34
predictions

0.9/0.3/ 0.8/ 0.3(0.7) 0.6(0.5){0.5)

5
" 05
. Max. distance o

predictions | lo.9//0.3/0.8/0.30.3 0.60.3]0.3

0.7
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CS- GPAV

Partial Order Isotonic Regression (IR) (Barlow and Brunk, 1972)

Input:

-G=<V,E >

- V:{15255|V|}

- Lfl =< 3}153}25“*53}|V| >,
begin algorithm

01: A. Isotonic correction:

minyg Ziev(f}i - gi)z

Ui € [03 1]

2: y = . : _ _
0 Y Vi, € par(i)=1y; > ¥
end algorithm
Output:

a_‘g:{ 3}1:3}23“-:3}|V| >

~

* |R selects the closest solution (in
the sense of the least squared
error) to the flat predictions
that obeys to the true path rule

A

IR computational complexity is: O(|V|*) (Maxwell et al. 1985)

al., 2006):

Generalized Pool-Adjacent-Violators (GPAV) (Burdakov et

e accurate solution to IR problem
* computational complexity is: O(IVIZ)

HEM for Ontology-based Prediction in Computational Biology
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CS- ISO-TPR pseudo-code

-

Input:

-G=<V,E>

-V ={12,....|V|}

-y =<gu.g2 - Gv) > i €[0,1]
-w =< wy,wa,... wy| >, w; € [0,1]

begin algorithm

01: A dist := Vi € V ComputeMaxDist (G, root(G)) Block A_B: same Of TPR_DAG
02:  B. Per-level bottom-up visit of G:

03: for each d from max(dist) to 0 do 1

04: Ny = {ildist(i) = d}

03 for sachi€Ngdo Consistency of prediction violated
06: Select the set ¢; of “positive” children

07: Yi 1= ﬁ(’gz + Z;e@- ¥j)

08: end for

09: end for

10:  C. GPAV algorithm

12: =1y

14 V=1{1,2,...,|V|} topologically ordered;

14: H:=V

15 WeV sov Bi={i) B =i Uit Wi Block C: GPAV instead of HTD-DAG

16:  for each k from 1 to |V| do

17: while exists i € B, such that U; > Ui do

18: find j € B), such that U; := max{l; : i € B } 1

0 Be = B-UBE\ () Consistency of prediction guaranteed
21: Uy := (Willke + W,Ug )/ (Wi, + W)

22: By, := B, U B;

23: Wy i= Wy + W,

24 Wi e By and Yk e H set j:=1U}

25: end while

26: y:=U, Yie B, and Vke H

27:  end for
end algorithm
Output:

-y =< gl:g_er"':E7|V| =

HEM for Ontology-based Prediction in Computational Biology M. Notaro



CS- Operating mode of ISO-TPR algorithm: Toy Example

FLAT STEP

BOTTOM-UP STEP

CONSISTENCY STEP

Legend
. Node at level 0
. Node at level 1
O Node at level 2
. Node at level 3
O Node at level 4

Example

0.7=(0.4+ 0.8 +0.9)/3

@

Y H

Legend

. Node at block 0
O Node at block 1
O Node at block 2
O Node at block 3
. Node at block 4

DESCENS for Gene-HPO term Prediction

M. Notaro




CS- Consistency Predictions: Theorems

HTD-DAG provides consistency predictions:

Given a DAG G =< V,E > a level function i that assigns to each node its maximum
path length from the root and the set of HTD-DAG flat predictions y =< y5,y5, ..., Y|y| >
the top-down hierarchical correction of the HTD-DAG algorithm assures that the set of

ensemble predictions ¥y =< y7,Y,, ..., Yjy| > satisfies the following property:

VieV, j€ par(i) = y; = ¥;

TPR-DAG provides consistency predictions:

Given a DAG G =< V,E >, a level function ¥ that assigns to each node its maximum
path length from the root, a set of predictions y =<7, ¥, ..., Y|y| > generated by the
bottom-up step of the TPR-DAG algorithm for each class associated to each node i €
{1,...,|V|}, the top-down step of the TPR-DAG algorithm assures that for the set of
ensemble predictions y =<¥y,y>, ..., ¥|v| > the following property holds:

VieV, j€par(i) >y =yi

HEM for Ontology-based Prediction in Computational Biology M. Notaro



CS- Consistency Predictions: Proof

For an arbitrary node i € V when it is processed by the top-down step of HTD-DAG
algorithm, we may have two basic cases:

1. i € root(G). By applying the HTD-DAG rule we set y; := ¥; and the property j €
par(i) = y; = ; trivially holds, since par(i) = @
2. i & root(G). We may have two cases:
1. y; < min _¥; :In this case the HTD-DAG rule sets y; := J; and hence it

j€par(i)
holds that j € par(i) = y; = ¥;

2. y; > min _y;: Inthis case by applying the HTD-DAG rule we have y; :=

jepar(i)
MiNjepari)yj and hence also in this case the property j € par(i) = y; =

y; holds.

The top-down step of the algorithm visits each node exactly one time, at the end of
this step the property j € par(i) = ¥j = ¥i holds for each nodei €V

HEM for Ontology-based Prediction in Computational Biology M. Notaro



BIO- Consistency of Predictions: Real Example

Legend

Flat Scores (Random Forest)

molecular function

J/'\

molecular transducer activity binding
v 0.63]063]"
signal transducer activity receptor activity protein binding
True-Path-Rule: if a gene 047[0.47)/ 0.38[0.43] [0.59]0.59,
product is associated signaling receptor activity transmembrane receptor activity cytokine binding
with a given functional 013 \\L
term, it must be — —
. . . transmembrane signaling receptor activity
associated with all its
parent terms and v
recursively with its peptide receptor activity G-protein coupled receptor activity
ancestor terms. \ .
G—protein coupled peptide receptor activity cytokine receptor activity

011035 \

G—protein coupled chemoattractant receptor activity

Flat vs Hierarchical GO predictions for the
Mouse protein C-C chemokine receptor type
6, whose high expression levels are

associated with colon cancer metastasis
(Kapur et al. 2016)

chemokine receptor activity

0340351

—

C-C chemokine receptor activity
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BIO- Correctness of Predictions: Real Example (1)

Hierarchical Ensemble Methods (HEMs) improve upon flat predictions by reducing
the number of FN and FP.

Shenotypio abnormalty TPR-DAG recovers 4 TP for
the protein coding gene
[FN[TP] / \ [FN]TP] RGS9 (regulator of G-protein
signalling 9) whose
[EN]TP] [FN]TP] mutations cause bradyopsia
* * e
[p[7P] [Tp[7P]

LEGEND
[ | CORRECT PREDICTION FOR BOTH

[ | IMPROVED PREDICTION

[ | NOT IMPROVED PREDICTION

[ svm
| TPR-DAG
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BIO- Correctness of Predictions: Real Example (2)

LEGEND Phenotypic abnormality

|| CORRECT PREDICTION FOR BOTH [TP[7P] - [TN]TN]

- IMPROVED PREDICTION

|| NOT IMPROVED PREDICTION - -Z ! - -
* *
[FP[TN]

TPR-DAG recovers 6 TN for the
protein coding gene ENAM
(enamelin) that encodes the
largest protein in the enamel
matrix  whose  deficiency s
associated with amelogenesis
imperfecta (Rajpar et al. 2001)

HEM for Ontology-based Prediction in Computational Biology M. Notaro



CS- Application to HPO (1)

HEMs vs. PHENOstruct, state-of-the-art joint-kernel structured output approach (Kahanda et
al. 2015)

Precision-Recall curves and AUPRC box-blot across 2444 HPO terms: HEMs significantly
improve PHENOstruct in according to Wilcoxon Sum Rank test (a = 10°) (Notaro et. al 2017)

HTD: 12 min
TPR-W: 3 hours (tuning of w parameter by 5cv)
PHENOstruct: 18 hours

0.4 T - T T T 7T
= HTD s T T N N

03 ~e TPR-W | I
c ' —A— PHENOSstruct 0.3
ks
@
g 02 0.2
o

0.1 e 0.11

A A A
Olo_l T T T T T T T T T 0.0_
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 <Q (O

Recall
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CS- Application to HPO (2)

List of possible “candidate” genes for novel annotations:
unannotated genes but predicted to be annotated by our HEMs

Gene Symbol HPO Term AUROC Depth Distance from Leaves Evidence
XRCC2 Clubbing of Toes 1.000 9 0 HPO March 2017 Release
LIPE Insulin-Resistant Diabetes Mellitus 0.9934 b 0 HPO March 2017 Release
IGF2 Neoplasm of the Adrenal Gland 0.9781 5 0 HPO March 2017 Release
ECHS1 Abnormality of Fatty-Acid Metabolism 0.9753 4 0 Chika et al. 2015
CFB Systemic Lupus Erythematosus 0.9967 5 0 Grossman et al. 2016
TGFBR3 Emphysema 0.9785 5 0 Hersh et al. 2009
BARD1 Nephroblastoma aka Wilms Tumor 0.9615 8 0 Fu etal. 2017
MSH3 Breast Carcinoma 0.9723 5 0 Miao et al. 2015
CAD Abnom ality of Pyrimidine Metabolism 0.9951 4 0 Bobby et al. 2015
COX10 Abnormmal Mitochondria in Muscle Tissue 0.9967 6 0 Pitceathly et al. 2013

Inclusion of the novel annotations in the next HPO release

HEM for Ontology-based Prediction in Computational Biology
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CS- Application to GO (1)

Goal:
« HEM provide consistent predictions with respect the underlying GO
ontology
* show that proposed HEM can improve upon flat predictions
independently of the choice of the base learner.
= we chose a range as broad as possible of flat classifier, ranging
from linear classifiers (svm), to neural networks (mlp), to
ensemble of learning machines (random forest) and to gradient
boosting algorithms

Experiments:

* predict the protein function of 6 different model organisms (D.
melanogaster, C.elegans, G.gallus, D.rerio, M. musculus, H. sapiens)
by using the Gene Ontology (GO);

* intensive task: overall we considered over than 100 thousands of
proteins and more than 15 thousands of functional GO terms

HEM for Ontology-based Prediction in Computational Biology M. Notaro



CS- Application to GO (2)

AUPRC boxplot across 760 GO (MF) terms — Homo Sapiens

ol

€ <& <% <%
{\’ @?P ‘@6@ ﬂo‘@{ﬂﬁa ﬂ

& ,@‘-?» o &°
&~ ;}50

0.4

1/

pvalue < 1076 — *xx;
pvalue < 1073 — xx; Paired Wilcoxon Sum Rank Test: Flat vs HEMs

pvalue < 1072 - x;
pvalue > 1072 - the difference is not statistically significant (ns);

The improvement introduced by HEMs strongly depends on the predictions made by
the underlying flat classifier
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CS- Application to GO (3)
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0.3
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‘%?“ ¢S N & 4‘;@‘“ oéqﬁggu‘{‘; \l@'f‘? cﬁf‘q*@‘ﬂ &
PR ° o0 ,69% b= Obgdd *1-9“0:00 o ﬁ@gdi cbee:cg'
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CS- Application to GO (4)

HEMs outperform flat

HTD
GP'Srv tprTF Gpﬁ"{: TF 1 1 1
1) r 1 r
BP oscsaTE dosocimtE B g BP descaia predictions independently of
1SOd ISOtqu 1SOd ISOlpqE 1SOd ISO‘WE 1SOd ISOtpqE
escens lescens escens escens M
the choice of the base
HTD HTD HTD HTD
yi o o, i |
1 T y T r
MF descer?srTF descer?sTF u }'g desoer?sTF MF descetr?sTF ea rn e r
1SOtprTF ISOtpI TF 088 ISOtpr TF 1SOtprTF
1SOdescensTF 1SOdescensTF 1SOdescensTF 1SOdescensTF ..
T o T T * Broad range of flat classifiers
i yo e i 7
1 T T r
cc descer?srTF cc descer?sTF cc descer?sTF CC gescensTF - | ] = o N . ” . .f.
1SOtprTF ISOtprTF ISOtprTF 1SOtprTF
ISOdescer?srTF ISOdescer?;TF HEEEEEN ISOdescerE;TF ISOdescetnpsrTF [T | StatIStlca y Slgnl Ica nt
TS LEARP LS & LE ARP QS R .
5 S SHORPKE B SR
$ FE S ¢ FEFTS improvement according to
CAEEL CHICK
PSR . the Wilcoxon Rank Sum test
AR S SEASE A <10~ 6
HTD HTD HTD HTD (O( >~ )
GPAV GPAV GPAY GPAV
8P tprTF B tprTF BP torTF BP tprTF
e o oo e * flexible tool that can be used
r r r r
ISOdescer?sTF ISOdescer?sTF [ | ISOdescer?sTF 1SOdescensTF
oy i oy e oW to virtually improve any flat
M GoscomeTF desconeTE tie doscomeTE 00 MF joccohiTE
lescens lescens escens escens M
1SOtprT! ISOtprTFE B loss ISOtprTF 02 1SOiprTF I earnin g met h (0] d
1SOdescensTF 1SOdescensTF M| [ | 1SOdescensTF 04 1SOdescensTF
HTD ] HTD HTD .
GPAV GPAV GPAV .
cC lprTF= = tprTF = cc tprTF ® Demandlng task.
i T i H s | ST .
r
ISOdescer?sT ISOdescer?sTF ISOdescer?sTF 1SOdescensTF u 6 o rga n I S m S
S A LA < o & .
« PO A $ &g S & I ]
DANRE ROME > 100k of proteins
o5 5 o PSS o b o o s e = > 15k of GO terms
ERECPRDI AB v RS Sy AEL SR
HTD HTD Wl N EE HTD [ HTD I N N
GPAV GPAV W GPAV W GPAV M .; -M
BP d lpqE 8P desce‘rﬁ)glE BP d ‘pﬁ BP desv:.etr'?sqlE hlerj flat"
iescens escens
1SOtpr TF 1SOlprTF 1SOtprTF 1SOlpr TF HeatM ap Cell =
ISOdescensTF ISOdescensTF 1SOdescensTF W 1ISOdescensTF max M M
HTD HTD HTD I 0s HTD hierj flat;
GPAV GPAV B win GPAV I 02 GPAV B win
ME tprTF tprTF tie tprTF 00 MF tprTF tie
T W Mloss| YT 02 “ToRAE M foss o
r r r - r H H
ISOdescensTF ISOdescensTF ISOdescensTF o5 1SOdesconsTF where M is a performance metric
HTD HTD HTD HTD
GPAY =.....:. aPAY aPAY = aPAY (AUPRC (0] Fmax)
[ ! [
cc descer?srTF | | H cc descer?;TF cc descer!l);TF cC descetnpsrTF
1SOtorTF [ ISOtprTF ISOtorTF 1SOtprTF
1SOdescensTF [ [0 1SOdescensTF [ ] 1SOdescensTF [ 1SOdescensTF HREN
S %ﬁﬁ&"\*%@\ Q‘P&%\\'}mﬁ&%”ﬁﬁ SR SRS SR & . . . .
NS . e & ouss <& ¥ Notaro et al., submitted to Bioinformatics




CS- Application to GO (5)

—+— svm-I80descensTF - & - svm-I80descensW - - svm-ISOdescensTAU —— GOstruct
~+ - DeepGOCNN -+~ DiamondScore —— DeepGOPIlus

—+— svm-1S0descensTF - & - svm-ISOdescensW - -+ - svm-ISOdescensTAU —— GOstruct
~+ - DeepGOCNN - - - DiamondScore —— DeepGOPlus

—+— svm-I30descensTF — & - svm-IS0descensW -+ - svm-ISOdescensTAU —s— GOstruct

—+— svm-180descensTF - & - svm-ISOdescensW - -+ - svm-1SOdescensTAU —s— GOstruct

— - DeepGOCNN -~ - DiamondScore —+— DeepGOPlus —+ - DeepGOCNN - -+ - DiamondScore —+— DeepGOPlus
0.34
031
0.28
0.24
5 5oz
@ @
: ]
2 FaAL
0.15
0.12
0.09
0.06-
Recall Recall
DANRE DROME
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CS- Summary (1)

Methodological Results

* HEMs are “highly modular” in the sense that they adopt a “two-step” learning
strategy: flat predictions + hierarchical correction;

 HEMs are characterized either by a single or a double step:
1. Bottom-Up step:
A. Improve sensitivity of the predictions;
B. Bottom-up predictions are inconsistent with the hierarchy of the classes;
2. Top-Down step:
A. Improve precision of the predictions;
B. Remove hierarchical violations;

 HEMs predictions always respect the True Path Rule (i.e. consistent with hierarchy
of classes)

 HEMs: improves flat scores but it cannot of course guarantee the correctness of
all the predictions (when e.g. the flat predictions are too bad HEMDAG fails in
recovering FP or FN)

« HEMDAG is specifically designed for DAG-structured taxonomies, but can be
safely applied to tree-structured taxonomies, since trees are DAGs;

HEM for Ontology-based Prediction in Computational Biology M. Notaro



CS- Summary (2)

Experimental Results

1. Prediction of HPO terms
2. Prediction of GO terms

* competitive with state-of-the-art results and at lower computational
complexity cost;

» predictions of novel gene-abnormal phenotype associations;

 HEMs algorithms systematically improve flat methods;

|

flexible tool that can be used to virtually improve any flat learning method

HEM for Ontology-based Prediction in Computational Biology M. Notaro
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