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Issues:
• multi-class: hundreds of thousands of functional classes to predict;
• multi-label: an instance (i.e. gene/protein) may be annotated to more than

one class at the same time;
• classes are unbalanced: small number of ‘positives’ annotations and a large

number of ‘negatives’ annotations;
• dependencies among labels: functional classes are hierarchically related;

Complex Classification or Ranking Problem

Outline

Prediction of: 
• Protein Function (applications in Molecular Biology);
• Human gene-abnormal phenotype associations (applications in Medicine);
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Critical Assessment of Function Annotation (CAFA) gathering the main 
international research groups interested on the Automated Protein 

Prediction (AFP)

CS- Scientific Relevance

Problems of great interest in the scientific community

CAFA Publications
• CAFA1: A large-scale evaluation of computational protein function prediction, Radivojac P, Clark 

WT, et al. (100 additional authors) Nature Methods, January 2013
• CAFA2: An expanded evaluation of protein function prediction methods shows an improvement 

in accuracy, Yuxiang Jiang, Tal Ronnen Oron, et al. (145 additional authors) Genome Biology, 
2016

• CAFA3: The CAFA challenge reports improved protein function prediction and new functional 
annotations for hundreds of genes through experimental screens, Naihui Zhou, Yuxiang Jiang, et 
al. (165 additional authors) Genome Biology, 2019

• CAFA4: challenge in the evaluation phase…
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Problem: Hierarchical prediction of Abnormal 
Phenotype associated to human diseases

Problem: Hierarchical Prediction 
of Protein Functions

Directed 
Acyclic 

Graph (DAG)

BIO- Ontology

Slide  3

http://www.obofoundry.org/

http://www.obofoundry.org/
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Hierarchy-unaware (or flat) approaches proposed in literature

• sequence based methods: follow transfer-of-annotation” paradigm where
a gene product is compared against a database and annotated with the
function of another protein on the basis of sequence similarity (BLAST (Altschul

et al. 1990), PANNZER (Holm et al. 2018) )

• network based methods: transfer annotations from labeled to unlabeled
nodes by exploiting “proximity relationships” between connected nodes.
These algorithms relied on the so-called guilt-by-association (GBA) rule,
which makes predictions assuming that interacting proteins are likely to
share similar functions (GBA (Oliver et al. 2000), RANKS (Valentini et al. 2018) )

CS- Flat Approaches (1) 

Drawback: fail to exploit the inherent hierarchical structure of the 
annotation space
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CS- Flat Approaches (2)

Flat Approaches:
o Pro: 

• simplicity
• make predictions separately for each ontology class

o Cons:
• a priori loss of information
• neglect structural information between classes

Violation Hierarchical Constraint:
positive instance for a class implies
positive instance for all the ancestors of 
that class

Flat Classification: 
a Toy Example
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Hierarchy-aware approaches proposed in literature:

• Kernel-based structured output methods: GOstruct
(Sokolov and Benhur 2010) PHENOstruct (Kahanda et al. 2015);

• Hierarchical Ensemble Methods (Guan et al. 2008, Valentini 2014);

CS- Hierarchy-Aware Approach

Advantage

• improve classification performance by explicitly taking
into account the hierarchical relationships between
labels
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CS- HEMDAG

HEMDAG a family of Hierarchical Ensemble Methods (HEM) for 
Directed Acyclic Graph (DAG)

HEMDAG (link)
                  

https://github.com/marconotaro/HEMDAG
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CS- HEMDAG– Highly Modular Structure

(a) Training of the base classifier: each classifier is trained using a specific learning algorithm on each term of the ontology;
(b) Hierarchical combination of the base classifiers: base classifiers are hierarchically organized according to the topology of the

ontology; 
(c) Bottom-up step: only the nodes considered to be “positive” are bottom-up propagated (circles with yellow rim); bottom-up 

yellow arrows represent positive predictions up-propagated and combined with those of their parents. This step boosts the 
sensitivity of the predictions, but it does not guarantee that they are consistent with the hierarchy. 

(d) Consistency step: it provides “TPR-safe” predictions. Circles with purple rim represent nodes whose predictions are 
corrected according to the hierarchy.



CS- HTD: Hierarchical Top-Down for DAGs
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HTD-DAG:
Flat scores        are hierarchically corrected to        according to this simple 
rule:

Remove constraint 
violations

Worst scenario: predictions 
at leaves nodes are negatives



CS- TPR-DAG: True Path Rule for DAGs 
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TPR ensemble for DAGs: double flow of information

Removing 
violations

Sensitivity 
improving 



CS- Bottom-Up Step (1)  
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In the bottom-up Step the ensemble decision is modified by averaging the local 
prediction of a node i with that of its positive children        : 

1)

Different strategies can be used to define the positive         of class i :

A. Adaptive Threshold Strategy: maximize        on training data by internal CV        

B. Threshold Free Strategy: positive children are those that achieve a score 
higher than that of their parents



CS- Bottom-Up Step (2)  

PG:  12HEM for Ontology-based Prediction in Computational Biology M. Notaro  PG:  12

TPR-DAG family of algorithms

C. Weighted TPR: w ∈ [0,1] to balance the contribution between node i and that 
of its positive children

D. DEScendant Classifier ENSemble (DESCENS): to enhance the contribution of the 
of the most specific nodes we can consider the descendants instead of children

E. Descendants- :       ∈ [0,1] to balance the contribution between        e        
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Overall TPR-DAG Computational 
Complexity: 𝑂 𝑉

Block A. Maximum Distance of each 
node from the root: 
• Bellman-Ford algorithm;
• Topological Sort algorithm.

Block C. Nodes are processed by level
from the least to the most specific
terms and the bottom-up scores are
corrected according to HTD-DAG rule.

Block B. Performs a per-level bottom-
up visit of the graph and updates the
flat predictions according to one of
the aforementioned strategies.
This step does not assure the 
consistency of the predictions.

CS-TPR-DAG pseudo-code
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inconsistent
predictions

consistent
predictions

To preserve the consistency of the predictions the levels must be defined 
according to the maximum distance from the root: 

CS- Maximum Distance
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• IR selects the closest solution (in
the sense of the least squared
error) to the flat predictions
that obeys to the true path rule

Partial Order Isotonic Regression (IR) (Barlow and Brunk, 1972)

IR computational complexity is: 𝒪 𝑉 4 (Maxwell et al. 1985) 

Generalized Pool-Adjacent-Violators (GPAV) (Burdakov et

al., 2006):
• accurate solution to IR problem

• computational complexity is: 𝒪 𝑉 2

CS- GPAV
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CS- ISO-TPR pseudo-code

Block A-B: same of TPR-DAG

Consistency of prediction violated

Block C: GPAV instead of HTD-DAG

Consistency of prediction guaranteed  
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CS- Operating mode of ISO-TPR algorithm: Toy Example
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CS- Consistency Predictions: Theorems

HTD-DAG provides consistency predictions:

Given a DAG 𝐺 = < 𝑉, 𝐸 > a level function 𝜓 that assigns to each node its maximum

path length from the root and the set of HTD-DAG flat predictions ො𝑦 =< ෞ𝑦1, ෞ𝑦2, … , ෞ𝑦 𝑉 >

the top-down hierarchical correction of the HTD-DAG algorithm assures that the set of

ensemble predictions ത𝑦 =< 𝑦1, 𝑦2, … , 𝑦 𝑉 > satisfies the following property:

∀i ∈ V, j ∈ par i ⇒ ഥyj ≥ ഥyi

TPR-DAG provides consistency predictions:

Given a DAG 𝐺 = < 𝑉, 𝐸 >, a level function 𝜓 that assigns to each node its maximum

path length from the root, a set of predictions ෤𝑦 =< ෦𝑦1, ෦𝑦2, … , ෦𝑦 𝑉 > generated by the

bottom-up step of the TPR-DAG algorithm for each class associated to each node i ∈

{1, … , V }, the top-down step of the TPR-DAG algorithm assures that for the set of

ensemble predictions തy =< y1, y2, … , y V > the following property holds:

∀i ∈ V, j ∈ par i ⇒ ഥyj ≥ yi
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CS- Consistency Predictions: Proof

For an arbitrary node i ∈ V when it is processed by the top-down step of HTD-DAG 

algorithm, we may have two basic cases:

1. 𝑖 ∈ 𝑟𝑜𝑜𝑡 𝐺 . By applying the HTD-DAG rule we set ഥyi ≔ ෝyi and the property j ∈

par i ⇒ ഥyj ≥ ഥyi trivially holds, since par i = ∅

2. 𝑖 ∉ 𝑟𝑜𝑜𝑡 𝐺 . We may have two cases:

1. ෝ𝑦𝑖 ≤ min
𝑗∈𝑝𝑎𝑟 𝑖

ෝ𝑦𝑗 : In this case the HTD-DAG rule sets ഥ𝑦𝑖 ≔ ෝ𝑦𝑖 and hence it 

holds that 𝑗 ∈ 𝑝𝑎𝑟 𝑖 ⇒ ഥ𝑦𝑗 ≥ ഥ𝑦𝑖

2. ෝ𝑦𝑖 > min
𝑗∈𝑝𝑎𝑟 𝑖

ഥ𝑦𝑗: In this case by applying the HTD-DAG rule we have ഥ𝑦𝑖 ≔

𝑚𝑖𝑛𝑗∈𝑝𝑎𝑟 𝑖 ഥ𝑦𝑗 and hence also in this case the property 𝑗 ∈ 𝑝𝑎𝑟 𝑖 ⇒ ഥ𝑦𝑗 ≥

ഥ𝑦𝑖 holds.

The top-down step of the algorithm visits each node exactly one time, at the end of 

this step the property j ∈ par i ⇒ ഥyj ≥ ഥyi holds for each node i ∈ V
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BIO- Consistency of Predictions: Real Example 

Flat vs Hierarchical GO predictions for the 
Mouse protein C-C chemokine receptor type 

6, whose high expression levels are 
associated with colon cancer metastasis 

(Kapur et al. 2016)

True-Path-Rule: if a gene 
product is associated 
with a given functional 
term, it must be 
associated with all its 
parent terms and 
recursively with its 
ancestor terms.



BIO- Correctness of Predictions: Real Example (1) 
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FN TP FN TP

FN TP

TP TP TP TP

FN FN

FN FN

FN TP

FN FN

CORRECT PREDICTION FOR BOTH

NOT  IMPROVED PREDICTION

IMPROVED PREDICTION

SVM

TPR-DAG

LEGEND

TPR-DAG recovers 4 TP for
the protein coding gene
RGS9 (regulator of G-protein
signalling 9) whose
mutations cause bradyopsia
(Michaelides et al. 2010)

Hierarchical Ensemble Methods (HEMs) improve upon flat predictions by reducing 
the number of FN and FP.



BIO- Correctness of Predictions: Real Example (2) 
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FP TN

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

FN FN

FN FN

FN FN

FP TN FP TN

FP TN

TN TN TN TN

TN TN

TN TN

FP TNFP TN

CORRECT PREDICTION FOR BOTH

NOT  IMPROVED PREDICTION

IMPROVED PREDICTION

SVM

TPR-DAG

LEGEND

TPR-DAG recovers 6 TN for the
protein coding gene ENAM
(enamelin) that encodes the
largest protein in the enamel
matrix whose deficiency is
associated with amelogenesis
imperfecta (Rajpar et al. 2001)
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HEMs vs. PHENOstruct, state-of-the-art joint-kernel structured output approach (Kahanda et
al. 2015)

HTD: 12 min
TPR-W: 3 hours (tuning of w parameter by 5cv)
PHENOstruct: 18 hours

Precision-Recall curves and AUPRC box-blot across 2444 HPO terms: HEMs significantly
improve PHENOstruct in according to Wilcoxon Sum Rank test (α = 10-9) (Notaro et. al 2017)

CS- Application to HPO (1)
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List of possible “candidate” genes for novel annotations: 
unannotated genes but predicted to be annotated by our HEMs

CS- Application to HPO (2)

Inclusion of the novel annotations in the next HPO release
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Experiments:

• predict the protein function of 6 different model organisms (D.
melanogaster, C.elegans, G.gallus, D.rerio, M. musculus, H. sapiens)
by using the Gene Ontology (GO);

• intensive task: overall we considered over than 100 thousands of
proteins and more than 15 thousands of functional GO terms

Goal: 
• HEM provide consistent predictions with respect the underlying GO 

ontology
• show that proposed HEM can improve upon flat predictions 

independently of the choice of the base learner.
▪ we chose a range as broad as possible of flat classifier, ranging 

from linear classifiers (svm), to neural networks (mlp), to 
ensemble of learning machines (random forest) and to gradient 
boosting algorithms

CS- Application to GO (1)
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CS- Application to GO (2)

The improvement introduced by HEMs strongly depends on the predictions made by
the underlying flat classifier

AUPRC boxplot across 760  GO (MF) terms – Homo Sapiens

• pvalue < 10−6 → ⋆⋆⋆;
• pvalue < 10−3 → ⋆⋆;
• pvalue < 10−2 → ⋆;
• pvalue ≥ 10−2 → the difference is not statistically significant ns ;

Paired Wilcoxon Sum Rank Test: Flat vs HEMs
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CS- Application to GO (3)

C. elegans
GO-CC: 221

D. rerio
GO-BP: 1182
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CS- Application to GO (4)

• HEMs outperform flat 
predictions independently of 
the choice of the base 
learner

• Broad range of flat classifiers

• Statistically significant 
improvement according to 
the Wilcoxon Rank Sum test 
(α ≤ 10−6)

• flexible tool that can be used 
to virtually improve any flat 
learning method

• Demanding task:
▪ 6 organisms
▪ > 100k of proteins
▪ > 15k of GO terms

𝐻𝑒𝑎𝑡𝑀𝑎𝑝𝐶𝑒𝑙l =
ℳ ℎ𝑖𝑒𝑟𝑗 −ℳ 𝑓𝑙𝑎𝑡𝑖

𝑚𝑎𝑥 ℳ ℎ𝑖𝑒𝑟𝑗 ,ℳ 𝑓𝑙𝑎𝑡𝑖

where ℳ is a performance metric 
(AUPRC o Fmax)

Notaro et al., submitted to Bioinformatics
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CS- Application to GO (5)

Comparison of precision at different 
recall levels averaged across BP 
terms between ISO-DESCENS (by 
using SVMs as base learners) and 
SOTA structured output methods
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CS- Summary (1)

Methodological Results

• HEMs are “highly modular” in the sense that they adopt a “two-step” learning
strategy: flat predictions + hierarchical correction;

• HEMs are characterized either by a single or a double step:
1. Bottom-Up step:

A. Improve sensitivity of the predictions;
B. Bottom-up predictions are inconsistent with the hierarchy of the classes;

2. Top-Down step:
A. Improve precision of the predictions;
B. Remove hierarchical violations;

• HEMs predictions always respect the True Path Rule (i.e. consistent with hierarchy 
of classes)

• HEMs: improves flat scores but it cannot of course guarantee the correctness of 
all the predictions (when e.g. the flat predictions are too bad HEMDAG fails in 
recovering FP or FN)

• HEMDAG is specifically designed for DAG-structured taxonomies, but can be 
safely applied to tree-structured taxonomies, since trees are DAGs;
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CS- Summary (2)

Experimental Results

1. Prediction of HPO terms

2. Prediction of GO terms

• competitive with state-of-the-art results and at lower computational
complexity cost;

• predictions of novel gene-abnormal phenotype associations;
• HEMs algorithms systematically improve flat methods;

flexible tool that can be used to virtually improve any flat learning method
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